Short Communication

Human Sex-Chromosome-Specific Repeats within a Region of Pseudoautosomal/Yq Homology

Elizabeth M. C. Fisher, Tiina Alitalo, Shiu-h-Wen Luoh, Albert de la Chapelle, and David C. Page

*Whitehead Institute, 9 Cambridge Center, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142; and †Department of Medical Genetics, University of Helsinki, 00290 Helsinki, Finland

Received January 30, 1990; revised March 30, 1990

Several categories of human X-Y homologous DNA sequences have been recognized. We report that a locus (DXYS77) approximately 14 kb distal to the pseudoautosomal boundary (PAB) is 93% identical in nucleotide sequence to a locus (DYS148) on the long arm of the Y chromosome (Yq). Within this segment of pseudoautosomal/Yq homology we identified a member of a family of repeats that are concentrated in Xp22.3 and in the euchromatic portion of the Y chromosome. The repeat sequence structure—a dimer bounded by short terminal repeats—is reminiscent of retroposons derived from RNA polymerase III transcripts. © 1990 Academic Press, Inc.

In the pseudoautosomal region of the human sex chromosomes, virtual identity of X and Y sequences is maintained by X-Y recombination during male meiosis. During a chromosomal walk of the distal short arm of the human Y chromosome, we isolated phage λOX316. The human insert of λOX316 is 14.5 kb in length and is pseudoautosomal, spanning the region from approximately 10 to 25 kb distal to PAB (the proximal boundary of the pseudoautosomal region as defined by Ellis et al., 1989). A 918-bp EcoRI fragment, pDP316, was subcloned from λOX316 (Fig. 1) and used as a hybridization probe to identify related sequences within a genomic library prepared from a 49,XYYYY male. λOX320 was among the cross-hybridizing clones identified. However, the restriction maps of phages λOX316 and λOX320 could not be aligned, suggesting that they might derive from two different loci. This suggestion was borne out by restriction mapping of additional phage clones from each of the two loci.

Portions of pseudoautosomal plasmid pDP316 were subcloned to yield pDP316a and pDP316b (Fig. 1). When hybridized to TaqI-digested genomic DNAs, pDP316a detected X-Y common restriction fragments [in males, females, and (not shown) human–rodent cell hybrids retaining only a human X or only a human Y chromosome].
FIG. 2. Physical mapping of pDP320-related sequences on the human sex chromosomes. (A) pDP320-related sequences map to Xp21.2-pter by deletion analysis. Plasmid pDP320 was hybridized to TaqI-digested DNAs from (left to right) XYYY male, OXEN, XXXX female, GM1416, a normal human male, a normal human female, mouse, hamster, and a series of human–rodent hybrids retaining the indicated portions of the human sex chromosomes [see Fig. 5 in Ref. (8) for details]. (B) In situ hybridization. Metaphase spreads of a normal male were incubated with theH-labeled pDP320 (sp act, 4.4 × 10^6 cpm/μg; concentration 20–40 ng/ml) as previously described (1). The slides were exposed for 21–26 days. The histogram summarizes the sites of hybridization in the 80 metaphase cells scored; grain clusters were scored as single grains.

as is characteristic of pseudoautosomal probes. While the hybridizing 1.6-kb TaqI fragment appears to be invariant, the 3.0- and 3.3-kb fragments are allelic. The characteristics of this TaqI RFLP are consistent with a location in the most proximal portion of the pseudoautosomal region: 3.3-kb homozygotes, 3.0-kb homozygotes, and heterozygotes have been observed among both males and females, but in 20 male meioses examined, no exception to sex linked inheritance was seen.

Pseudoautosomal plasmid pDP316 cross-hybridized strongly to a 916-bp EcoRI fragment from phage ΦX320 (from the second locus). This 916-bp EcoRI fragment and portions thereof were subcloned to yield plasmids pDP320, pDP320a, and pDP320b (Fig. 1). When hybridized to TaqI-digested genomic DNAs, pDP320a detected the allelic (3.0- or 3.3-kb) fragments recognized by pDP316a. In addition, pDP320a hybridized to 2.1-kb and (barely detectable) 4.6-kb fragments which are male-specific rather than pseudoautosomal. (These male-specific fragments were not detected by pDP316a, which is 182 bp shorter than pDP320a, but were detected by other portions of pDP316, e.g., pDP316b; Fig. 1.) The 2.1- and 4.6-kb male-specific fragments detected by pDP320a were mapped to intervals 5–6, on the long arm of the Y chromosome, by hybridization to DNAs from individuals with previously characterized deletions (Vergnaud et al., 1986). We conclude that a pseudoautosomal locus defined by pDP316a and its derivatives is homologous to a Yq locus defined by pDP320a and its derivatives. These pseudoautosomal and Yq loci have been designated, respectively, DXYS77 and DYS148.

In contrast to pDP316a and pDP320a, which yield rather simple patterns of hybridization, both pDP316b and pDP320b detected 15 to 20 bands of varying intensity when hybridized to TaqI-digested human genomic DNAs (Figs. 1 and 2A). Restriction fragment length polymorphisms were observed but, with the exception of the 2.1-kb male-specific fragment previously detected by pDP320a, no fragments appeared to be specific to males or females. Similar patterns of hybridization were observed with human genomic DNAs digested with EcoRI, HindIII, or PstI. We conclude that pseudoautosomal clone pDP316b and Yq clone pDP320b contain members of a repetitive sequence family.

We then assessed the chromosomal distribution of these repeats. First, pDP320 was hybridized to DNAs from a panel of human–rodent cell hybrids retaining...
various sets of human chromosomes. Only hybrids retaining human X or Y chromosomes gave appreciable signals. Second, deletion mapping using hybrids retaining partial human X chromosomes demonstrated that substantial numbers of the repeats are located in Xp21.2–pter; there is no evidence of such repeats elsewhere on the X chromosome (Fig. 2A). Third, in situ hybridization of pDP320 revealed a concentration of repeats in the euchromatic portion of the Y chromosome, principally Yp, and refined the X chromosome location to Xp22.3, the most distal band on the short arm (Fig. 2B). Of a total of 308 autoradiographic grains located on chromosomes, 30 (10%) were found on Xp22.3, while 40 (13%) were on the euchromatic portion of the Y (30 of these grains on Yp). In light of these findings, the similarity of male-female hybridization patterns (e.g., Southern blots of Figs. 1 and 2A) suggests that most of the repeats are pseudoautosomal. However, we cannot exclude the possibility that some repeats map to the strictly X-linked portion of Xp22.3. As already described, at least one repeat maps to Yq.

Cross-hybridizing repetitive sequences occur in other mammals. When pDP320 was hybridized to Southern transfers of genomic DNAs from primates, rabbits, dogs, goats, and horses, multiple fragments were readily detected in both males and females (not shown). However, no hybridization to mouse DNA was observed.

Nucleotide sequence analysis of pseudoautosomal clone pDP316 and Yq clone pDP320 clarified the nature of the repeats. The sequences of pDP316 and pDP320 differ by only three insertion/deletions, each of one or two nucleotides, and are otherwise 93% identical (Fig. 3A). No long open reading frames were found. In addition to a 388-bp flanking sequence, each clone contains a tandem duplication of 230 to 238 bp, with 52 to 57 bp terminally repeated (Fig. 3B). (The inserts of pDP316 and pDP320 do not cross-hybridize to restriction fragments adjoining them in the genome, confirming that the repeats are contained entirely within pDP316 and pDP320 and are dimers.) These dimeric repeats may be pseudogenes derived from RNA polymerase III-transcribed sequences; they have a structure grossly similar to Alu repeats. Such pseudogenes frequently contain an internal RNA polymerase III promoter (Deininger, 1989). Indeed, the 230- to 238-bp tandem repeats contain sequences similar to the A-box motif of RNA polymerase III promoters (Fig. 3A).
Sequence analysis also shed light on the relationship of the repeats to the pseudoautosomal/Yq homology. Within pDP316, the two 230- to 238-bp monomers are 90% identical; within pDP320, the two monomers are 86% identical. The pDP316 dimer is 92% identical to that of pDP320. Thus, the interclone similarity is as great as if not greater than the intracrine similarity. This suggests the following sequence of events during evolution: (1) tandem duplication of a 230- to 238-bp monomer to form a dimer, followed by (2) interarm duplication of a larger unit containing the dimer.

Not only the dimeric repeats but also the flanking sequences of pseudoautosomal clone pDP316 and Yq clone pDP320 are highly similar: the two clones are 92 and 95% identical in, respectively, their repeat and flanking regions. This suggests that the interarm duplication involved a block of DNA larger than the inserts of the two clones. Indeed, other pseudoautosomal DNA sequences in the immediate vicinity of pDP316 (as well as other Yq sequences in the immediate vicinity of pDP320) show pseudoautosomal/Yq patterns of hybridization on Southern blots of human genomic DNAs, suggesting that the duplicated segment is at least several kb in length (E. M. C. Fisher, unpublished results). The modest divergence of pDP316 and pDP320 indicates that the duplication occurred during primate evolution. Hybridization of pDP320a to Southern transfers of male and female chimpanzee and gorilla DNAs (not shown) suggests that the duplication occurred prior to the divergence of humans and apes. In apes, as in humans, pDP320a detects one fragment common to males and females and one fragment specific to males.

Five categories of human X-Y homologous sequences have previously been identified: (1) pseudoautosomal (e.g., Cooke et al., 1985; Simmler et al., 1985); (2) Xq/Yp (e.g., Page et al., 1984); (3) Xp/Yq (e.g., Kenoen et al., 1985); (4) Xq/Yq (Cooke et al., 1984); and (5) Xp/Yp non-pseudoautosomal (Page et al., 1987). We have identified a sixth class of human X-Y homology—between the pseudoautosomal locus DXYS77 and the Yq locus DYS148.

Within this duplicated segment, we identified a short interspersed repetitive sequence whose relatives are, as judged by a variety of hybridization techniques, concentrated on the X and Y chromosomes. However, computer searches revealed sequences distantly related to these repeats in a number of autosomal locations, including PAD (A4 amyloid protein), BCR, and the mu–delta intron of IG (E. M. C. Fisher, unpublished results). Thus, it may be that a narrow offshoot of a widely dispersed family of short interspersed repeats has proliferated on the sex chromosomes.

Rouyer and colleagues (1990) have recently characterized a family of interspersed repetitive sequences (STIR) specific to human subtelomeric regions, especially the pseudoautosomal regions of X and Y chromosomes. Although the chromosomal distribution of these STIR repeats and of the repeats described in this paper overlap considerably, nucleotide sequence comparison suggests that the two families of repeats are not closely related.

ACKNOWLEDGMENTS

We thank Ben Stanger and David Housman for probing a cell hybrid panel; T. K. Mohandas, Huntington Willard, and Mariano Rocchi for cell hybrids; and Douglas Black for critical suggestions. This work was supported by grants from the National Institutes of Health, the Dupont Center for Molecular Genetics, the Schaefer Scholars Program/Chicago Community Trust, the Sigrid Juselius Foundation, the Folkhalsan Institute of Genetics, and the Academy of Finland. E.M.U.C.F. was supported by a fellowship from EMBO.

REFERENCES