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TEX11 is mutated in infertile men with
azoospermia and regulates genome-wide
recombination rates in mouse
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Abstract

Genome-wide recombination is essential for genome stability,
evolution, and speciation. Mouse Tex11, an X-linked meiosis-
specific gene, promotes meiotic recombination and chromosomal
synapsis. Here, we report that TEX11 is mutated in infertile men
with non-obstructive azoospermia and that an analogous muta-
tion in the mouse impairs meiosis. Genetic screening of a large
cohort of idiopathic infertile men reveals that TEX11 mutations,
including frameshift and splicing acceptor site mutations, cause
infertility in 1% of azoospermic men. Functional evaluation of
three analogous human TEX11 missense mutations in transgenic
mouse models identified one mutation (V748A) as a potential infer-
tility allele and found two mutations non-causative. In the mouse
model, an intronless autosomal Tex11 transgene functionally
substitutes for the X-linked Tex11 gene, providing genetic evidence
for the X-to-autosomal retrotransposition evolution phenomenon.
Furthermore, we find that TEX11 protein levels modulate genome-
wide recombination rates in both sexes. These studies indicate
that TEX11 alleles affecting expression level or substituting single
amino acids may contribute to variations in recombination rates
between sexes and among individuals in humans.
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Introduction

Infertility, defined as the inability to conceive after a prolonged

period, is a worldwide reproductive health problem, affecting men

and women about equally (Hull et al, 1985; Matzuk & Lamb, 2002).

The underlying causes are multifaceted, including physiological,

environmental, social, and genetic factors; and studies in various

model organisms have identified multiple molecular and genetic

pathways that regulate fertility (de Rooij & de Boer, 2003; Matzuk &

Lamb, 2008). In particular, mouse models have identified more than

400 genes that are specifically or preferentially involved in the regu-

lation of fertility, facilitating genetic studies of infertility in humans

(Matzuk & Lamb, 2008; Handel & Schimenti, 2010; Jamsai &

O’Bryan, 2011). In humans, male infertility is a more clearly defined

entity in cases of azoospermia or severe oligospermia (Hull et al,

1985; Silber, 2000). Known genetic causes of azoospermia in

humans include Y chromosome deletion and chromosomal abnor-

malities such as Klinefelter syndrome (47, XXY); these account for

~25% of spermatogenic failure in otherwise healthy men (Reijo

et al, 1995, 1996; Van Assche et al, 1996). Therefore, the majority

(~75%) of cases of spermatogenic failure in humans are idiopathic,

and the underlying causes are postulated to be genetic. However, to

date, efforts to uncover point mutations in single genes that contri-

bute to human spermatogenic failure have been largely unsuccessful

(Matzuk & Lamb, 2008; Nuti & Krausz, 2008; Jamsai & O’Bryan,

2011).

Two major hurdles complicate the molecular genetic analysis of

human male infertility. Traditionally, many disease-causing mono-

genic mutations have been identified through pedigree-based link-

age analyses, demonstrating that the mutation co-segregates with a

disease in multi-generation families and can therefore be deemed

causative. This conventional approach is not applicable to the study

of human male infertility, because infertile men lack biological

offspring; it is therefore difficult to determine whether a mutation

is causative. The second hurdle is that clinical and ethical
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considerations limit the availability of sufficient testis biopsy mate-

rial from patients for further validations. Genome-wide association

studies (GWAS) have identified risk loci for non-obstructive azoo-

spermia in humans (Hu et al, 2011, 2014). While variants in a

number of genes have been identified in infertile men, causality of

these variants has not been definitively proven (Sun et al, 1999;

Miyamoto et al, 2003; Stouffs et al, 2005a,b, 2006; Krausz et al,

2006; Rohozinski et al, 2006; Martinez et al, 2007; Luddi et al,

2009).

Genomic studies have revealed that germ cell-specific genes are

not randomly distributed in the genome, and that, in particular, the

unique hemizygous and transcriptional status of the X chromosome

has shaped its germ cell-specific gene content (Wang et al, 2001;

Khil et al, 2004; Namekawa et al, 2006; Turner et al, 2006; Mueller

et al, 2008; Song et al, 2009). The mammalian X chromosome is

enriched for germ cell-specific genes expressed during early sper-

matogenesis. A systematic genomic screen of mouse spermatogonia,

which are diploid mitotic germ cells of the testis, identified dozens

of genes that are expressed specifically in male germ cells, and

nearly one-third of these genes map to the X chromosome, suggest-

ing that genes encoded on the X chromosome play a preeminent role

in early spermatogenesis (Wang et al, 2001). Genetic studies in

mouse models have shown that three of these X-linked genes

(Tex11, Taf7 l, and Nxf2) are important regulators of male fertility

(Cheng et al, 2007; Yang et al, 2008; Pan et al, 2009; Zheng et al,

2010). As males are hemizygous for the X chromosome, mutations

in single-copy X-linked genes cannot be compensated by a corre-

sponding wild-type allele such as in heterozygous carriers of autoso-

mal recessive mutations. Therefore, mutations in X-linked genes

essential for fertility may represent a significant proportion of infer-

tility-causing mutations in men.

Tex11 is essential for male fertility in mice. Disruption of Tex11

gene function causes meiotic arrest in males, resulting in azoosper-

mia (Yang et al, 2008). Here, we report that the frequency of rare

TEX11 mutations is significantly elevated in azoospermic men,

suggesting that TEX11 is required for spermatogenesis in humans.

In combination with analyses of genetically modified mice harbor-

ing Tex11 mutations analogous to those in human, our results

demonstrate that in ~1% of azoospermic men, infertility is caused

by mutations in a single X-linked gene—the TEX11 gene. Further-

more, our studies show that meiotic progression requires a critical

threshold level of TEX11 protein and, significantly, that genome-

wide meiotic recombination rates in both sexes are sensitive to

TEX11 levels.

Results

Frequent singleton TEX11 mutations in men with
spermatogenic failure

To evaluate the role of TEX11 in human fertility, we screened geno-

mic samples from 246 azoospermic men with spermatogenic failure

(no sperm in semen) and from 175 controls that included men who

had fathered children (n = 93) and men of unknown fertility

selected to represent worldwide genetic diversity based on their

Y-chromosomal haplotypes (n = 82). All the infertile patients selected

were pre-screened for the lack of Y chromosome microdeletions.

Sequencing of amplicons covering the TEX11 exons and flanking

intronic regions revealed 40 different sequence variants in TEX11 in

our cohorts (Table 1 and Supplementary Table S1). Of these vari-

ants, 21 were singletons (observed in only one man; Table 1),

whereas 19 were observed in two or more men and thus are not

likely to be associated with spermatogenic failure (Supplementary

Table S1).

We detected a significantly higher percentage of singleton vari-

ants in men with spermatogenic failure than in controls (7.3%

versus 1.7%, P = 0.007, Fisher’s exact test, Table 1). Of the 21

singletons, 18 were found in azoospermic men and three in controls

(Table 1). The significantly higher prevalence of singleton variants

in azoospermic men strongly suggests that TEX11 is required for

spermatogenesis in human.

With the exception of a frameshift mutation, 1258Ins(TT) in exon

16, and a splice site mutation, in intron 21, the mechanisms by

which the singleton mutations may cause or predispose to azoo-

spermia are not clear. Five of the singleton exonic mutations among

azoospermic men were missense (W117R, V142I, Q172R, T244I,

and V748A), and two were silent (Table 1). The remaining 10 were

intronic mutations with undetermined functional consequences

except for the splice site mutation (�1G?A) at the consensus

30 splice acceptor site in intron 21, which would be expected to

abolish splicing (Table 1).

Meiotic arrest in an azoospermic man with a frameshift
mutation in TEX11

Among the singleton TEX11 mutations identified in azoospermic

men, a frameshift mutation in exon 16 would predictably impair

TEX11 protein function, yielding a severely truncated protein

comprising only the N-terminal half. The patient carrying this muta-

tion (WHT3759) and his brother were azoospermic, and two mater-

nal uncles were childless (Fig 1A). Analysis of DNA samples from

both parents of WHT3759 revealed that the mother was hetero-

zygous for the mutation, whereas the father had the wild-type allele

(Fig 1B), demonstrating inheritance of the mutation from the

mother. We could not obtain DNA samples from the patient’s

brother or maternal uncles and thus were unable to determine

whether these relatives carried the same mutation as the proband.

Nevertheless, the data in this family are consistent with X-linked

spermatogenic failure.

Histological analysis of a testis biopsy obtained from the azoo-

spermic patient WHT3759 revealed meiotic arrest at the pachytene

stage (Fig 1C). No post-meiotic germ cells such as round spermatids

and mature spermatozoa were observed in the seminiferous tubules,

consistent with the diagnosis of azoospermia. Based on the histolog-

ical data, we conclude that the primary defect caused by the TEX11

frameshift mutation of this patient is meiotic arrest, corresponding

to the phenotype observed in Tex11-null (Tex11�/Y) male mice

(Yang et al, 2008).

Experimental transfer of Tex11 from the X chromosome
to an autosome

To circumvent the inherent problems in the genetic dissection of

human infertility as described earlier, we chose to analyze the

consequences of mutant human TEX11 alleles in genetically
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modified mice harboring analogous mutations in murine Tex11. The

generation of mice with gene-specific mutations usually relies on

gene targeting by homologous recombination in male (XY) embry-

onic stem (ES) cells and subsequent transmission of the modified

allele through the germ line of male ES cell chimeras. However, this

approach would predictably fail when modeling X-linked mutations

causing male infertility, as these would not be transmitted through

the male germ line. To overcome this impediment, we generated an

experimental copy of the Tex11 gene at an autosomal locus, placing

a Tex11 knockin allele under the transcriptional and translational

control of Tex19.1 (Chr. 11; Fig 2A). We chose the Tex19.1 locus for

several reasons. First, Tex19.1 and Tex11 exhibit similar temporal

expression patterns during spermatogenesis. Previous studies have

shown that both genes are expressed in spermatogonia and early

spermatocytes (Wang et al, 2005; Yang et al, 2008, 2010). Further-

more, the Tex19.1 ORF is entirely encoded in one exon (exon 3)

(Kuntz et al, 2008; Ollinger et al, 2008; Yang et al, 2010), permitting

replacement of the Tex19 ORF with the Tex11 ORF (Fig 2A).

As Tex19+/� mice display normal fertility (Ollinger et al, 2008;

Yang et al, 2010), the deletion of one Tex19.1 copy to generate the

Tex11 knockin allele would not be associated with phenotypic

consequences.

An autosomal Tex11 knockin minigene rescues male infertility in
adult Tex11�/Y mice

We next determined whether the wild-type autosomal Tex11

knockin minigene (Tex19Tex11KI) could functionally replace its

X-linked progenitor and rescue infertility of azoospermic Tex11�/Y

males. In male meiotic germ cells, TEX11 localizes to recombina-

tion nodules and regulates both chromosomal synapsis and the

formation of crossovers between homologous chromosomes.

Tex11-deficient spermatocytes are eliminated at the pachytene

and anaphase I stages of meiosis due to extensive asynapsis and

a failure in chromosome segregation (Yang et al, 2008). We

crossed Tex19Tex11KI/+ males (Fig 2A) with Tex11+/� females to

generate Tex19Tex11KI/+ Tex11�/Y males (hereafter referred to as

Tex11 KI/KO males). Western blot analysis confirmed that TEX11

protein was expressed in the testes of adult (3-month) KI/KO

male mice albeit at lower levels compared to wild-type testes

(Fig 2B). Tex11 knockin males (Tex11 KI plus the wild-type Tex1l

allele) exhibited higher testicular TEX11 protein levels compared

to wild-type males. Therefore, TEX11 protein levels in these

mouse models correlate with gene dosage (Fig 2B). Adult males

of the four genotypes (Tex11�/Y, Tex11 KI/Tex11�/Y, Tex11+/Y,

Table 1. Singleton sequence variants in TEX11 found in infertile patients and controls.

Position Nucleotide change Resultant change Patient ID

Infertile males Control males

AZ Fertile NIH diversity

246a 93a 82a

Exon 6 349T?A Missense mutation, W117R WHT3150 1

Exon 6 405C?T Silent mutation WHT3171 1

Exon 7 424G?A Missense mutation, V142I WHT3417 1

Exon 7 515A?G Missense mutation, Q172R WHT3500 1

Exon 10 731C?T Missense mutation, T244I WHT2546 1

Exon 16 1258Ins (TT) Frameshift mutation; 1258GATG?TTGGTA WHT3759 1

Exon 26 2243T?C Missense mutation, V748A WHT2499 1

Exon 27 2319T?C Silent mutation WHT2546 1

Intron 3 �17T?Cb Intronic alteration WHT3448 1

Intron 5 �48G?A Intronic alteration WHT3040 1

Intron 10 +42C?A Intronic alteration WHT3839 1

Intron 12 �28T?C Intronic alteration WHT3058 1

Intron 15 �64G?A Intronic alteration WHT3158 1

Intron 21 �1G?A Alteration of splicing acceptor site WHT2445 1

Intron 22 �37A?G Intronic alteration WHT3059 1

Intron 24 +119G?A Intronic alteration WHT3158 1

Intron 27 �55A?C Intronic alteration WHT2546 1

Intron 28 �44A?G Intronic alteration WHT3864 1

Exon 7 466A?G Missense mutation, M152V 1

Intron 20 +16A?G Intronic alteration 1

Intron 23 �44C?T Intronic alteration 1

AZ, azoospermic males.
aNumber of individuals screened.
b+1 refers to the first base of a given intron, and �1, the last base.
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Tex11 KI/Tex11+/Y) had comparable body weight (data not

shown). Testes from adult KI/KO males weighed significantly

more than those from Tex11-null males but less than those

from wild-type males (Fig 2C). Strikingly, the sperm count of

3-month-old KI/KO males was comparable to that of wild-type

males (Fig 2D). As expected, the KI/KO males were fertile.

Histological analysis revealed that KI/KO and wild-type testes

contained the full spectrum of spermatogenic cells including

mature spermatozoa, whereas Tex11-null testes exhibited

meiotic arrest of germ cells as previously reported (Fig 2E) (Yang

et al, 2008). Chromosomal synapsis defects caused by Tex11

deficiency were rescued by the Tex11 KI minigene (Fig 2F).

Taken together, we conclude that the autosomal Tex11 KI

minigene rescues meiotic arrest and male infertility in adult

Tex11�/Y mice.

Defective meiosis in the first wave of spermatogenesis in Tex11
KI/KO mice

Testes from 8-week-old Tex11 KI/KO males were comparable in

size and weight to wild-type testes (Fig 3A). However, testes from

juvenile Tex11 KI/KO males (postnatal day 25, 36, or 49) were

much smaller than wild-type testes (Fig 3A), suggesting a develop-

mental delay or a failure in the first wave of spermatogenesis in

Tex11 KI/KO males. Spermatogenesis proceeds through distinct

stages that include mitotic proliferation of spermatogonial stem

cells, meiotic division of spermatocytes, and spermiogenesis of

haploid spermatids; this occurs in a locally synchronized and

coordinated manner described as spermatogenic waves (McCarrey,

1993). In juvenile mice, the first wave of spermatogenesis is initi-

ated within 1 week after birth, producing mature spermatozoa by

postnatal day 35. This wave bypasses a self-renewing spermatogo-

nia stage and displays a synchronized appearance of differentiat-

ing germ cells in seminiferous tubules (de Rooij, 1998). In adult

mice, waves of spermatogenesis are not synchronized among

different seminiferous tubules. In Tex11-null male mice, lack of

TEX11 affects juvenile and adult spermatogenic waves equally

(Yang et al, 2008). In mature Tex11 KI/KO male mice, the chro-

mosomal asynapsis defects caused by TEX11 deficiency were

rescued by the Tex11 KI allele (Fig 2F). However, analysis of

spermatocytes from juvenile Tex11 KI/KO males revealed that

chromosomal synapsis remained severely impaired at day 25, that

is, during the first spermatogenic wave (Fig 3B and Supplemen-

tary Fig S2). Evaluation of the number of MLH1 foci, which mark

the site of future meiotic crossovers (Anderson et al, 1999), indi-

cated that the meiotic recombination defect in juvenile testis was

largely but not fully rescued by the Tex11 KI minigene (Fig 3C).

These results suggest that defective meiosis rather than develop-

mental delay causes the severe impairment of the first

spermatogenic wave in juvenile Tex11 KI/KO males. Western blot

analysis revealed substantially lower TEX11 protein levels in

juvenile (day 25) KI/KO testes compared to wild-type testes

(Fig 3B). These results suggest that the amount of TEX11 protein

expressed from the Tex11 KI allele was too low to fully rescue

meiotic defects in Tex11-null juveniles (Fig 3B), but was

expressed at a higher level in adult mice, which is sufficient for

meiotic progression in adult Tex11 KI/KO males (Fig 2B). Alterna-

tively, different threshold levels of TEX11 may be needed for

A

B

C

Figure 1. X-linked inheritance of a frameshift mutation in TEX11.

A Family tree of the azoospermic male patient WHT3759. The patient’s
brother was azoospermic with maturation arrest, and two maternal uncles
were childless; DNA samples from these individuals could not be obtained.
The patient’s paternal uncle and all five paternal aunts each had two or
three children (not shown).

B Complex frameshift mutation (patient WHT3759). The nucleotide sequence
in exon 16 (in parentheses) changes from ACT(GATG)CCC to ACT(TTGGTA)CCC,
resulting in a net insertion of two bases and generation of a KpnI restriction
site (underlined). We confirmed heterozygosity of the mother (WHT4067) by
KpnI digestion of PCR products (data not shown).

C Testicular maturation arrest in the patient (WHT3759). Testicular tissue
obtained by biopsy was sectioned and stained with hematoxylin/eosin.
Seminiferous tubules contained meiotic germ cells such as zygotene (ZS,
arrowheads) and pachytene spermatocytes (PS, arrows), but no post-
meiotic germ cells such as round spermatids were detectable. Scale bar,
25 lm.
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A

B C D

E F

Figure 2. A wild-type Tex11 knockin allele at the autosomal Tex19.1 locus rescues male sterility in Tex11-null adult mice.

A Schematic diagram of Tex11 gene structure, Tex19.1 gene structure, targeting vector and the final Tex11 knockin allele containing the wild-type Tex11 ORF.
B Western blot analysis of TEX11 in the testes of 3-month-old mice with different Tex11 gene dosages. ACTB serves as a loading control.
C Testis weight of 3-month-old males.
D Sperm count of 3-month-old males.
E Histological analysis of testes from adult wild-type, Tex11 KI/KO, and Tex11�/Y males. RS, round spermatids; ES, elongating spermatids; Pa, pachytene spermatocytes.

Scale bar, 50 lm.
F The Tex11 knockin allele rescues chromosomal synapsis defects in Tex11�/Y spermatocytes in 3-month-old males. Chromosomal synapsis defects were assessed by

SYCP1 and SYCP2 immunostaining of spread nuclei from 100 pachytene spermatocytes per male; for each genotype, three males were analyzed. Abbreviations for
Tex11 genotypes: �/Y, Tex11 knockout (Yang et al, 2008); KI;�/Y, Tex11 knockin and knockout; +/Y, wild type; KI;+/Y, Tex11 knockin plus wild-type Tex11.

Data information: All statistical analyses were performed using Student’s t-test. n.s.: not statistically significant.
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progression of meiosis during the first wave of spermatogenesis

compared to adult waves of spermatogenesis.

Meiotic recombination levels are sensitive to the gene
dosage of Tex11

The presence of fewer MLH1 foci in spermatocytes from Tex11

KI/KO juvenile mice compared to wild type suggested that Tex11

dosage might influence the rate of meiotic recombination (Fig 3C).

To further test this hypothesis, we analyzed the recombination rate

in spermatocytes from 3-month-old males with increasing Tex11

gene dosages (genotypes: Tex11�/Y, Tex11 KI/Tex11�/Y, Tex11+/Y,

Tex11 KI/Tex11+/Y; Fig 4A and Supplementary Fig S3). The

recombination rate was significantly different among these males,

with the lowest rate in Tex11�/Y males and the highest rate in Tex11

KI/Tex11+/Y males, revealing a positive correlation between meiotic

recombination rate and Tex11 dosage in males.

In female germ cells, both X chromosomes are active such that

both copies of the Tex11 gene can be transcribed. Tex11 deficiency

reduces the number of MLH1 foci in fetal oocytes (Yang et al,

2008). To ascertain whether the meiotic recombination rate in

females depends on Tex11 gene dosage, we evaluated recombina-

tion frequencies in Tex11�/�, Tex11+/�, and wild-type oocytes

(Fig 4B). The average number of MLH1 foci in Tex11+/� oocytes

was significantly higher than in Tex11�/� oocytes but significantly

lower than in wild-type oocytes, demonstrating that meiotic recom-

bination rate in females is strongly affected by the Tex11 gene

dosage. In conclusion, meiotic recombination rates in both sexes are

sensitive to the Tex11 gene dosage.

A TEX11 missense mutation found in an infertile man causes
defects in chromosomal synapsis

We identified five TEX11 missense mutations (W117R, V142I,

Q172R, T244I, V748A) in azoospermic men (Table 1 and Fig 5A)

that were not detected in any of the 175 control men, implying that

they are likely to be genetic causes of infertility in humans. By

sequence alignment analysis of TEX11 homologues from diverse

species (human, mouse, rat, horse, cat, dog, marsupial, chicken,

and fish), we found that three of these mutations affect residues that

are highly evolutionary conserved and may therefore be important

for functional and/or structural integrity (W117, Q172, and V748;

Supplementary Fig S1). We therefore evaluated the consequences of

missense mutations at these residues (W117R, Q172R, and V748A)

in vivo by generating knockin mice harboring mutant Tex11 “retro-

genes” at the Tex19.1 locus.

Using the same experimental approach as for the wild-type

Tex11 KI allele (Fig 2A), we generated three different KI mouse

lines, each harboring one TEX11 point mutation (W118R, Q173R, or

V749A) (Fig 5B) analogous to the human mutations. All three KI

A B C

Figure 3. Defective meiotic progression in the first wave of spermatogenesis in Tex11 KI/KO males.
The knockin allele expresses the wild-type Tex11 ORF.

A Reduced testis weight in juvenile but not adult Tex11 KI; �/Y males. The time frames of the first wave and adult waves of spermatogenesis are indicated.
B Increased chromosomal asynapsis in spermatocytes and reduced levels of TEX11 protein in the testes of 25-day-old Tex11 KI/KO males. Chromosomal synapsis defects

were assessed by SYCP1 and SYCP2 immunostaining of spread nuclei from 100 pachytene spermatocytes per male; for each genotype, three males were analyzed.
C Pachytene spermatocytes from 25-day-old Tex11 KI/KO males contain significantly fewer MLH1 foci compared to wild-type spermatocytes. Values are shown as

average � standard deviation. Error bar is standard deviation.

Data information: Statistical analyses were performed with Student’s t-test.
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alleles were targeted to the Tex19 locus through homologous recom-

bination in ES cells and thus were under the transcriptional and

translational control of the Tex19 locus (Fig 5B). These three alleles

are referred to as KI(W118R), KI(Q173R), and KI(V749A), respec-

tively. Mutant KI males (Tex19Tex11KI(mutant)/+ Tex11+/Y) were

fertile, suggesting that none of these point mutations are dominant

negative. We then crossed KI males with Tex11+/� females to

generate KI/KO males.

Western blot analysis of testes from mature (3-month-old) males

confirmed comparable expression levels of TEX11 from all KI alleles

(Fig 6A). Mature KI/KO males with the three different Tex11 KI

alleles (three point mutations) were comparable to KI/KO males with

a wild-type Tex11 KI allele (hereafter referred to as wild-type KI/KO)

in respect to body weight, testis weight, and fecundity (Fig 6B,C and

E). Sperm counts of KI(W118R)/KO and KI(Q173R)/KO males

were also similar to wild-type KI/KO males (Fig 6D), correlating with

rescue of chromosomal synapsis defects in males of these genotypes

(Fig 6F and Supplementary Fig S4). Meiotic recombination rates,

reflected by the number of MLH foci in pachytene stage sperma-

tocytes, were comparable between KI(W118R)/KO and wild-type

KI/KO males. Intriguingly, pachytene cells from KI(Q173R)/KO

males contained more MLH foci than wild-type KI/KO germ cells,

indicating a higher rate of recombination (Fig 6G). These results

suggest that the TEX11 mutations (W117R and Q172R) may not

cause male infertility in humans.

In striking contrast, the sperm count of KI(V749A)/KO males

was significantly reduced compared to controls (Fig 6D). Surface

spread analysis of pachytene spermatocytes revealed a similar

proportion of asynapsis in germ cells from KI(V749A)/KO (33%;

Fig 6F and Supplementary Fig S4) and KO males (34%; Fig 2F),

revealing that the KI(V749A)/KO mutant phenocopies the KO

mutant in terms of chromosomal synapsis in mice (Yang et al,

2008). Consistent with these observations, histological analysis of a

testis biopsy obtained from patient WHT2499 carrying the TEX11

V748A missense mutation (Table 1) revealed meiotic arrest at the

pachytene stage (Supplementary Fig S5). However, the meiotic

recombination rate in KI(V749A)/KO males was comparable to the

control (Fig 6G). We previously showed that TEX11 regulates two

distinct processes during meiosis: chromosomal synapsis and meiotic

recombination (Yang et al, 2008). Our current data therefore identify

the single amino acid change (V749A) in TEX11 as a separation-of-

function mutation that disrupts chromosomal synapsis but not

meiotic recombination. Significantly, our results strongly support

that the human TEX11 V748A mutation is likely a genetic cause of

infertility in azoospermic men.

Discussion

Our studies show that TEX11, an X-linked meiosis-specific gene,

is mutated in azoospermic men. A conservative calculation that

considers only three TEX11 mutations (frameshift mutation in

exon 16, splice site mutation in intron 21, and V748A missense

mutation) indicates an infertility-causing mutation frequency in

human TEX11 of ~1% (three mutations/246 azoospermic men

screened, Table 1). Given that hundreds, if not thousands, of

genes specifically regulate fertility, finding a causative mutation

frequency of 1% in TEX11 is highly significant. This frequency is

comparable with the mutation frequency of BRCA1 (~2%) in

breast cancers (Kurian, 2010). Finding a high mutation frequency

of TEX11 among infertile men is not entirely unexpected: TEX11

is X-linked, such that any inherited or de novo mutations that

A

B

Figure 4. Tex11 dosage affects the number of MLH1 foci in meiotic germ
cells in both sexes.

A The number of MLH1 foci in pachytene spermatocytes from 3-month-old
males positively correlates with increasing Tex11 gene dosage.

B Quantification of MLH1 foci in pachytene oocytes from the ovaries of
Tex11�/�, Tex11+/�, and wild-type embryonic day-17.5 (E17.5) fetuses
reveals a positive correlation of Tex11 gene dosage and the number of
MLH1 foci.

Data information: Statistical analyses were performed with Student’s t-test.
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impair the function of this essential fertility factor would manifest

as infertility.

Histological analysis of testis biopsies from two azoospermic

men with TEX11 mutations revealed meiotic arrest at the pachy-

tene stage, indicating that TEX11 plays a critical role in human

meiosis (Fig 1C and Supplementary Fig S5). We have previously

shown that mouse TEX11 protein localizes to foci on meiotic chro-

mosomes and that TEX11 promotes homologous recombination

and chromosomal synapsis (Yang et al, 2008). Mutations in

SPO22/ZIP4, which are the budding yeast and Arabidopsis homo-

logues of TEX11, lead to defects in meiosis (Tsubouchi et al, 2006;

Chelysheva et al, 2007). TEX11 therefore plays an evolutionarily

conserved role in meiosis from budding yeast to humans. It is

noteworthy that the azoospermic man with the V748A mutation

exhibits complete meiotic arrest (Supplementary Fig S5), whereas

Tex11 KI(V749A)/KO mice displayed severe meiotic defects but no

complete meiotic arrest. The differential effect of this missense

mutation on the fertility of mouse and human may be attributed to

the species-specific requirement or context, as Tex11 is a rapidly

evolving gene with only 56% protein sequence identity between

mouse and human.

Crossovers are formed through at least two pathways:

MLH1-dependent and Mus81-dependent (de los Santos et al, 2003;

Holloway et al, 2008). The majority of crossovers in mice is

processed through the MLH1-dependent pathway and is subject to

crossover interference, a phenomenon that ensures wide spacing of

crossovers on the same chromosome (Holliday, 1977; Bishop &

Zickler, 2004). ZIP4/TEX11 belongs to the ZMM protein group and

thus promotes crossover via the MLH1-dependent pathway (Perry

et al, 2005; Tsubouchi et al, 2006; Chelysheva et al, 2007). In fact,

disruption of ZIP4/TEX11 in yeast, Arabidopsis, and mouse causes

reduction in MLH1-dependent crossovers (Tsubouchi et al, 2006;

Chelysheva et al, 2007; Yang et al, 2008). Notably, the effect

of Tex11 gene dosage on the number of MLH1 foci in mouse is

nonlinear. This nonlinear effect may be largely attributed to

crossover homeostasis (Martini et al, 2006; Zhang et al, 2014).

Although Mus81-dependent crossovers are not affected in Arabidop-

sis Zip4 mutant (Chelysheva et al, 2007), further studies are needed

A

B

Figure 5. Modeling human male infertility in mice using the autosomal knockin approach.

A Schematic representation of missense and nonsense mutations in human TEX11 found exclusively in men with azoospermia. The full-length TEX11 protein (GenBank
accession number: NP_112566) contains 925 residues. The tetratricopeptide-like (TPR-like) helical domain, found in proteins that form large complexes, extends from
residues 161 through 499 (Blatch & Lassle, 1999). Four of the residues mutated in azoospermic men (W117, V142, Q172, and V748) are conserved between human and
mouse TEX11 proteins (Supplementary Fig S1).

B Generation of three lines of Tex11 knockin mice. Each harbors a single amino acid substitution in TEX11 (indicated by asterisks) analogous to a missense mutation
identified in a human patient. Nucleotide and respective amino acid changes are indicated. Exons 1, 2, and 30UTR are from the mouse Tex19.1 gene.

Figure 6. A single amino acid change (V749A) in TEX11 causes severe defects in chromosomal synapsis in mice.
Data shown are from 3-month-old Tex11 KI/KO males with wild-type or mutant knockin allele (n, number of males analyzed per genotype) except for mating test (E).

A Western blot analysis reveals comparable levels of TEX11 protein in the testes of wild-type and point mutant KI/KO males. ACTB serves as a control.
B–D Body weight (B), testis weight (C), and significantly reduced sperm count (per pair of epididymides) in Tex11 KI(V749A)/KO males (D).
E Mating test of 3- to 5-month-old males.
F Dramatically increased chromosomal asynapsis in spermatocytes from Tex11 KI(V749A)/KO males. 100 pachytene spermatocytes per mouse were examined by

surface spread analysis.
G Number of MLH1 foci in pachytene spermatocytes. Note a significantly higher number of MLH1 foci in spermatocytes from KI(Q173R)/KO males.

Data information: Values are shown as average � standard deviation. n.s.: not statistically significant.

▸
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to examine the formation of Mus81-dependent crossovers in Tex11-

deficient and knockin mutant mice.

Recent linkage-based studies in humans and mice suggest that

multiple loci regulate the levels of genome-wide meiotic recombina-

tion (Kong et al, 2008; Chowdhury et al, 2009; Murdoch et al,

2010). Variants in RNF212, a SUMO E3 ligase, is associated with

recombination rate in human populations (Kong et al, 2008). Mouse

RNF212 localizes to a subset of recombination sites (Lake & Hawley,

2013; Reynolds et al, 2013). HEI10, a ubiquitin E3 ligase, regulates

meiotic recombination in mouse, rice, and Arabidopsis (Ward et al,

2007; Chelysheva et al, 2012; Wang et al, 2012). Interestingly, the

levels of crossovers are sensitive to the gene dosage of Rnf212 and

Hei10 (Lake & Hawley, 2013; Reynolds et al, 2013; Qiao et al,

2014). Seven recombination-associated loci have been mapped in

the mouse genome, and the genetic locus with the highest LOD score

in mouse maps close to Tex11 on the X chromosome (Murdoch et al,

2010). Non-synonymous Tex11 SNPs are associated with testicular

size in cattle (Lyons et al, 2014). Our current results demonstrate

that recombination rates in both sexes are sensitive to TEX11 levels.

In addition, a missense mutation (Q173R) in Tex11 increases the

recombination rate in mice (Fig 6G). Therefore, different expression

levels of TEX11 or single amino acid substitutions may contribute to

the variable genome-wide meiotic recombination rates between

sexes and among individuals, and as such, low-expressing TEX11

alleles could be genetic causes of male infertility in humans.

We find that the engineered Tex11 minigene on the autosome

rescues the infertility caused by the X-linked Tex11 deletion. The

significance of this finding is two-fold. First, genetic modification of

this allele can be used as a strategy to determine the consequences

of human TEX11 mutations in vivo by introducing analogous

mutations into the autosomal Tex11 knockin allele. Secondly, this

allele resembles and therefore models endogenous testis-specific X-

to autosomal retrogenes. These genes originate from the retrotrans-

position of X-linked genes to autosomes during evolution and

exhibit testis-specific expression patterns. A common hypothesis for

the evolution of X-to autosomal retrogenes is that they provide a

backup source for gene expression during mammalian meiosis,

which involves silencing of the X chromosome in males (McCarrey

& Thomas, 1987; Emerson et al, 2004; Wang, 2004; Turner, 2007).

The autosomal Tex11 knockin allele generated in our study carries

the hallmarks of an X-to autosomal retrogene, that is, lack of its

introns, and therefore provides the first direct genetic evidence

that such a gene can substitute for the function of its X-linked

“ancestral” gene.

Materials and Methods

Ethical considerations and patient consents

The human mutation screening protocol was approved by the Insti-

tutional Review Board of the Massachusetts Institute of Technology.

Informed consent was obtained from all participants. Experiments

conformed to the principles set out in the WMA Declaration of

Helsinki and the Department of Health and Human Services

Belmont Report. Standard barrier mouse housing conditions and all

experiments involving mice were approved by the Institutional

Animal Care and Use Committee of the University of Pennsylvania.

Animals were used based on genotypes. No randomization and no

blinding were used.

Population samples

We studied 246 patients with non-obstructive azoospermia. We

excluded patients known to have had any of the following conditions

or treatments that cause or predispose to spermatogenic failure:

Y-chromosomal deletions (Reijo et al, 1995, 1996; Vogt et al, 1996;

Kuroda-Kawaguchi et al, 2001; Repping et al, 2002); a 47, XXY

karyotype; orchitis; cryptorchidism; radiotherapy; or chemotherapy.

The 175 control subjects included men known to have fathered

children (n = 93) and men of unknown fertility selected to represent

worldwide genetic diversity based on their Y-chromosomal haplo-

types (n = 82, samples from the NIH polymorphism discovery panel,

Coriell Cell Repositories, and from our collection; Collins et al,

1998). We prepared DNA from peripheral blood leukocytes or

EBV-transformed lymphoblastoid cell lines.

Mutation screening

The TEX11 exon/intron structure was determined by alignment of

the TEX11 cDNA sequence (NM_031276) with its genomic sequence

(Wang et al, 2001). We amplified the TEX11 coding exons (exons 2

through 30) by PCR using 28 primer pairs (GenBank dbSTS acces-

sion numbers: BV703476–BV703503). PCR was performed in a 25 ll
reaction with 12.5 ng genomic DNA (94°C, 30 s; 56°C, 30 s; 72°C,

90 s; 35 cycles). PCR products were purified by Sephadex S-300 gel

filtration. 12.5 ll of purified PCR product was sequenced in a 25 ll
reaction using one of the PCR primers and ABI BigDye according to

the manufacturer’s instructions. Reaction products were separated

and read on an ABI 3700 sequencer. Sequence analysis was

performed using the Sequencher software (Gene Codes Corpora-

tion), and sequence variants were identified by manual inspection

of aligned sequences.

Generation of Tex11 knockin mice

The two homologous arms (2.1 kb each) of the Tex11 knockin

targeting construct were amplified from a Tex19.1-positive BAC

clone (RP23-400P17) by high-fidelity PCR and were subcloned into

the NeoA plasmid to flank a floxed PGK-Neo selection cassette,

resulting in the parent vector pUP104-12. The mouse Tex11 ORF

was subcloned into pUP104/CalI-EcoRV upstream of the PGK-Neo

cassette, resulting in pUP115 (Fig 2). The construct was verified by

sequencing. Hybrid V6.5 XY ES cells (C57BL/6 × 129/sv) were elec-

troporated with the linearized Tex11 knockin targeting construct

(pUP115/NotI), followed by culture in the presence of G418

(350 lg/ml). Seven days after electroporation, 96 G418-resistant ES

cell clones were picked and screened by PCR for homologous

recombination on both sides, identifying seven homologously

targeted ES cell clones. Two targeted ES cell clones (C4 and E8)

were injected into B6C3F1 (Taconic) blastocysts that were

subsequently transferred to the uteri of pseudopregnant ICR

females. Male chimeras were bred with Actb-Cre females to delete

the PGK-Neo cassette, and germ-line transmission of the wild-type

Tex11 knockin allele was obtained from chimeras derived from both

ES cell clones.
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To generate Tex11 alleles with missense mutations, nucleotide

changes were introduced into the Tex11 ORF by overlapping PCR,

followed by subcloning of the mutant Tex11 ORF into pUP104-12.

The final Tex11 knockin targeting constructs for mutations T352A,

A518G, and T2246C were pUP106-1, pUP107-4, and pUP108-5.

Sequencing of the final constructs confirmed each desired mutation

and revealed no other mutations. ES cells were targeted and

screened as described above. One ES cell clone for each point muta-

tion was injected into blastocysts. ES cell clones 1C2, 2D4, and 3G2

contained the Tex11 knockin allele bearing mutations T352A,

A518G, and T2246C, respectively. These three nucleotide mutations

correspond to amino acid changes W118R, Q173R, and V749A,

respectively (Fig 5B). All knockin alleles were transmitted through

the germ line from male chimeras, and point mutations were further

confirmed by DNA sequencing of amplicons from tail genomic

DNA. All knockin mice used in the study were from colonies that

had been backcrossed to C57BL/6J for three generations. Offspring

were genotyped by PCR of tail genomic DNA with the following

primers: Tex11 knockin allele with PGK-Neo (510 bp), GCACC

CTCAAAACAAGCTATG and CCTACCGGTGGATGTGGAATGTGTG;

Tex11 knockin allele without PGK-Neo (252 bp), GCACCCTCAAA

ACAAGCTATG and CTGAGCTTTAGTGTCTCAGG; Tex11 knockout

allele (530 bp), ACTGTGTTACACTAGGTTGGA and TGAGGTCT-

GAAATCTGAGTTG.

Histological and nuclear surface spread analysis

For histology, testes were fixed in Bouin’s solution, embedded in

paraffin, sectioned, processed, and stained with hematoxylin and

eosin. For meiotic nuclear surface spread analysis, spermatocytes or

prophase I oocytes were prepared using the dry-down method as

previously described (Peters et al, 1997; Kolas et al, 2005). Spread

nuclei were immunostained with the following primary antibodies:

Anti-SYCP1 (1:50; catalog no. ab15090, Abcam), anti-SYCP2 (1:100,

sera 1918 and GP21; Yang et al, 2006), anti-MLH1 (1:50; catalog no.

550838, clone G168-15; BD Biosciences), followed by detection with

FITC- and Texas red-conjugated secondary antibodies. Images were

captured on a digital camera coupled to a Zeiss Axioskop 40 fluores-

cence microscope. The number of MLH1 foci per nucleus was

counted.

Mating tests and sperm count

Each adult male (three males per genotype; Fig 6E) at the age of

3–5 months was housed with two 8-week-old wild-type C57BL/6J

females for 4 months. Mice were checked daily, and litter size was

recorded. Sperm count was performed as previously described

(Cheng et al, 2007).

Western blot analysis

Testicular protein extracts were prepared by homogenization of

testes from 3-month- or 25-day-old mice in SDS–PAGE buffer.

Testicular protein (30 lg) was separated on a SDS–PAGE gel and

blotted onto a nitrocellulose membrane. The blot was probed

with the following primary antibodies: anti-TEX11 (Yang et al,

2008) and anti-ACTB (1 : 7,500; catalog no. A5441, clone AC-15;

Sigma).

Statistics

All data were analyzed using GraphPad Prism (GraphPad Software

Inc) and KaleidaGraph (Synergy Software). Statistical analysis of

singleton variants in infertile and control men was conducted using

Fisher’s exact test (Table 1). Student’s t-test was performed for body

weight, testis weight, sperm count, mating test, chromosomal asynap-

sis, and the number of MLH1 foci. Normal distribution of the

number of MLH1 foci was tested using Shapiro–Wilk test and

D’Agostino’s K-squared test in GraphPad Prism. A P-value ≤ 0.05

was considered significant.

Supplementary information for this article is available online:

http://embomolmed.embopress.org
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The paper explained

Problem
Infertility is a worldwide reproductive health issue. Azoospermia, char-
acterized by the absence of sperm in semen, is a severe form of male
infertility. The cause for the majority of azoospermia is unknown and
likely to be genetic. Genetic studies of azoospermia in humans is
complicated by the presence of hundreds, if not thousands, of candi-
date genes.

Results
We sequenced azoospermic patients (with no known causes) for
mutations in TEX11, an X chromosome-linked germ cell-specific gene.
We found one frameshift mutation, one point mutation at a splicing
acceptor site, and a number of missense mutations in infertile
patients. The frameshift mutation in the reported patient was passed
from the mother, consistent with X-linked inheritance. Further analy-
sis using mouse as an in vivo model demonstrated that one missense
mutation (V748A) impairs meiosis. Our results show that mutations in
the TEX11 gene account for 1% of infertility in non-obstructive azoo-
spermic men. Furthermore, genome-wide recombination rates in both
sexes depend on levels of TEX11 protein.

Impact
Our results suggest that mutations in TEX11 underlie non-obstructive
azoospermia in a significant fraction of men. Identification of genetic
causes of male infertility would improve genetic counseling for
patients seeking infertility treatment.
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For more information
Online Mendelian Inheritance in Man (OMIM)/TEX11, http://omim.org/entry/

300311

GenBank SNP database, http://www.ncbi.nlm.nih.gov/projects/SNP/

Coriell Cell Repositories, https://catalog.coriell.org/
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