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Although much structural polymorphism in the human genome
has been catalogued1–5, the kinetics of underlying change
remain largely unexplored. Because human Y chromosomes are
clonally inherited, it has been possible to capture their detailed
relationships in a robust, worldwide genealogical tree6,7.
Examination of structural variation across this tree opens
avenues for investigating rates of underlying mutations. We
selected one Y chromosome from each of 47 branches of this
tree and searched for large-scale variation. Four chromosomal
regions showed extensive variation resulting from numerous
large-scale mutations. Within the tree encompassed by the
studied chromosomes, the distal-Yq heterochromatin changed
length Z12 times, the TSPY gene array changed length Z23
times, the 3.6-Mb IR3/IR3 region changed orientation Z12
times and the AZFc region was rearranged Z20 times. After
determining the total time spanned by all branches of this tree
(B1.3 million years or 52,000 generations), we converted
these mutation counts to lower bounds on rates: Z2.3 � 10�4,
Z4.4 � 10�4, Z2.3 � 10�4 and Z3.8 � 10�4 large-scale
mutations per father-to-son Y transmission, respectively.
Thus, high mutation rates have driven extensive structural
polymorphism among human Y chromosomes. At the
same time, we found limited variation in the copy
number of Y-linked genes, which raises the possibility
of selective constraints.

Recent studies point to substantial large-scale copy number variation
within the human genome, and a few such studies have shown large
inversions1–5. With the exception of one large inversion that arose
once in human history4, the mutational dynamics underlying com-
mon large-scale, structural polymorphisms have not been addressed.
Are these polymorphisms usually the result of independent, recurrent
mutation, or are they inherited from a single founder? How often do
mutations generate structural variants? The male-specific region of the
human Y chromosome (Fig. 1) offers unique opportunities for
investigating these questions because of its clonal inheritance and

the availability of a robust genealogical tree that describes in detail the
relationships among extant Y chromosomes (Fig. 2)6,7.

With these questions in mind, we assembled a collection of Y
chromosomes representing 47 major branches of the genealogy and
encompassing worldwide diversity (Fig. 2 and Supplementary Table 1
and Supplementary Fig. 1 online). On the basis of analysis of
published empirical evidence, we searched for nine broad categories
of potential structural variation among these chromosomes (Fig. 1a,
2, 3 and Supplementary Methods online). For several reasons, we
focused on potential structural variation involving the segmentally
duplicated, ampliconic regions of the Y chromosome. Previous results
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Figure 1 Overview of potential structural variation in the human Y

chromosome. At top, the structure of the reference Y chromosome, including

short and long arms (Yp and Yq), pseudoautosomal regions 1 and 2 (PAR1

and PAR2) and centromere (Cen). (a) Potential structural polymorphisms

for which we assayed (details in Supplementary Methods). (b) Structural

elements conserved between human and chimpanzee Y chromosomes are

shown according to their position in the reference human Y chromosome.

These conserved elements consist of the X-degenerate sequence,

palindromes P8, P7 and P6 and the centers of palindromes P2 and P1.
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showed only a handful of large-scale structural rearrangements in
nonampliconic portions of the human Y in the B6.5 million years
since humans and chimpanzees diverged8,9. Moreover, none of these
differences is polymorphic among extant human Y chromosomes
(data reported in Supplementary Methods). At the same time,
available data suggest that there is little large-scale structural similarity
between the ampliconic regions of the human and chimpanzee Y
chromosomes, with conserved ampliconic structures confined to
palindromes P6, P7 and P8 and the centers of palindromes P1 and
P2 (refs. 9,10; Fig. 1b). Thus, among human Y chromosomes, struc-
tural polymorphisms would most likely involve ampliconic regions.

We designed assays that would be maximally informative for each of
the nine categories of structural variation, which include inversions
and subtle changes in copy number (Supplementary Methods). For
example, pulsed-field DNA blots can detect subtle differences in the
length of the TSPYarray11, metaphase FISH can detect several different
kinds of potential pericentric inversions12,13 and multicolor interphase
FISH can detect other large inversions and distinguish between
alternative large-scale organizations of the AZFc region14,15.

Of the nine categories of potential structural variation, our search
detected four, which occurred in four regions of the chromosome.
Two of the regions, the distal-Yq heterochromatin and the TSPY array,
showed large-scale length variation. The distal-Yq heterochromatin is

composed of low-complexity sequences orga-
nized in tandem arrays16. It ranged in length
from 29% to 54% of the metaphase Y chro-
mosome, with a median of 44% (Figs. 1, 2, 3a
and 5a). The TSPY array is composed of
highly similar 20.4-kb repeat units, each
containing a copy of the TSPY gene and of
the CYorf16 transcription unit11,16,17. The
TSPY array ranged in size from 23 to 64
units (0.47 to 1.3 Mb), with a median of 32
units (0.65 Mb; Figs. 1, 2, 3b and 5b).

The third region, in proximal Yp, was
inverted in 16 chromosomes (Figs. 1, 2,
3c–f, 5d)18,19. We localized the boundaries

of this 3.6-Mb inversion to within 100 kb of the IR3 repeats, strongly
supporting the model that the inversions originated via ectopic
homologous recombination between the IR3 repeats (Fig. 3c–f)16,20.

The fourth region, AZFc, demonstrated abundant architectural
polymorphism (Figs. 1, 2, 4 and 5d). Because this region is composed
almost entirely of large, nearly identical, repeated amplicons21, there
are myriad possibilities for rearrangement via ectopic homologous
recombination. We predicted AZFc architectures that could result
from homologous recombination between amplicons Z100 kb in
length and designed combinations of two-color FISH and plus/minus
STSs to detect these potential architectures (Supplementary Table 2
and Supplementary Fig. 2 online). These assays showed that 20 of the
47 chromosomes had variant AZFc architectures, the largest of which
involved a duplication of B3.5 Mb (Figs. 2, 4, 5d and Supplementary
Figs. 3–7 online).

For each of the four regions showing structural polymorphism, we
determined the minimum number of independent mutation events
needed to produce the distribution of variants across the genealogical
tree; that is, a minimum-mutation history. The many distinct lengths
that we observed in the distal-Yq heterochromatin and TSPY array
must have been the result of multiple mutations (Figs. 2 and 5a,b).
For a more complete analysis, we calculated minimum-mutation
histories using methods that accommodate experimental variance in
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Figure 2 Y chromosome genealogical tree (left)

and identified structural polymorphisms (right).

Chromosomes were assigned to one of 47

branches by typing for the stable, biallelic

polymorphisms indicated (for example, M91 and

M60; refs. 6,7). Red arrows indicate major

branches confined to Africa6. For each branch,

the structure of the Y chromosome sampled is

schematized, including, at far right, the length

of distal-Yq heterochromatin. Within the

euchromatin, the presence of a particular

structural variant is indicated by a color-coded

rectangle. Codes denoting specific AZFc

architectures are explained in Figure 4,

Supplementary Table 2 and Supplementary

Figures 2–7. See Supplementary Figures 3 and 4

for the ‘ctr P3’ deletion and for ‘YCC038’, which

contains a small deletion, but in which

duplication predominates. The reference Y

chromosome belongs to the indicated branch

(Supplementary Methods), but, as no

corresponding cell line exists, its heterochromatin

and TSPY array lengths could not be determined.

Supplementary Figure 1 provides sample

identifiers and Y-haplotype designations6,7.
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allele length (Supplementary Methods)22. For the TSPY array, this
yielded an estimate of Z23 changes in length, and for the distal-Yq
heterochromatin, an estimate of Z12 large changes in length. For the
TSPYarray, these changes were probably due to unequal crossing-over.
Likewise, for the distal-Yq heterochromatin, large changes were
probably attributable to unequal crossing-over, although small changes
probably also occurred via mutational mechanisms that operate on
micro- or minisatellites. For IR3/IR3, there were Z12 independent

inversion events, and for AZFc, there were Z20 rearrangement events
(Supplementary Methods). We also noted that in minimum-muta-
tion histories of AZFc, inversion events were overrepresented com-
pared with a null model of equally probable inversions, deletions and
duplications (P o 0.038; Supplementary Methods). A predominance
of inversion events could be caused by (i) more frequent inversion
events than deletion or duplication events or (ii) natural selection
against deletions and duplications but not inversions.

Having estimated lower bounds on the numbers of mutations
causing structural variation, we proceeded to investigate their rates.
For this, we needed to determine the denominator of the rate: that is,
the total time represented by all branches in the genealogy. To estimate
this, we used the total number of SNPs in the tree, the average number
of SNPs on paths from the root to the leaves and the time to the last
common ancestor of extant human Y chromosomes (Supplementary
Methods). Use of previously reported SNPs in this estimate might
have led to bias, if some parts of the tree were more intensively
screened for SNPs than others. Therefore, we resequenced B80 kb in
the 47 chromosomes, thereby identifying 94 SNPs in an unbiased way.
Using these SNPs, we estimated the total time represented by the

Figure 4 Detecting architectural variation in

AZFc. Sample identifiers shown in parentheses.

(a) Two-color FISH of interphase nuclei with AZFc

reference architecture. Below the nuclei, AZFc

reference architecture is depicted as a sequence

of color-coded arrows representing amplicons21.

Probes and sites of hybridization are shown;

probe colors match those of detected amplicons.

Left: FISH with green and red probes.

Right: FISH with green and yellow probes.

(b–d) Interphase nuclei with variant AZFc

architectures probed as in a. Inferred amplicon

organizations are shown below pairs of nuclei.

(e) Interphase nuclei probed with 18E8 (red,

left), 363G6 (green, center) and 79J10 (yellow,

right), indicating four pairs of red amplicons, six

green amplicons and four yellow amplicons. Of
AZFc architectures with these counts, only c6 is

likely to be generated from the reference by one

recombination event, although others can be

generated by two successive events

(Supplementary Figs. 2 and 5 and Supple-

mentary Table 2). (f) Interphase nuclei from

sample WHT2426. Left: probed as in left panel of a; center: probe 79J10; right: probe 366C6, which hybridizes to the gray amplicon in AZFc (see a) and to

chromosome 1 (Supplementary Methods). Three closely spaced dots at the upper left arise from AZFc and indicate three gray amplicon copies. The two

strong signals in the lower half arise from chromosome 1. No predicted AZFc architecture would yield this pattern of FISH results (Supplementary Table 2).
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Figure 3 Assaying variation in heterochromatin length, TSPY array length

and IR3/IR3 orientation. (a) Quinacrine staining of metaphase Y

chromosomes with distal-Yq heterochromatin that is short (sample 4566),

average (PD178) or long (PD123). (b) PmeI pulsed-field DNA blot to assay

the number of TSPY repeats. (c,d) Three-color FISH of interphase nuclei

with the reference orientation of the IR3/IR3 region (sample WHT3242).

Below each nucleus is a schematic diagram of proximal Yp with IR3 repeats

indicated; regions detected by each probe (199M2, 516H8, pDP97 and

62H15) are indicated in the color of the probe’s stain. (e,f) Interphase

nuclei with IR3/IR3 inversion (sample WHT3257). Results shown in c and e

map the proximal inversion breakpoint between 516H8 and pDP97 in the

reference orientation and between 199M2 and pDP97 in the inverted

orientation. Results shown in d and f map the distal inversion breakpoint

between 62H15 and 199M2 in the reference orientation and between

62H15 and 516H8 in the inverted orientation. 62H15 cross-hybridizes
to the X chromosome, generating additional red dots at nuclear margins

in d and f.
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genealogical tree at 1.3 million years, which conservatively corresponds
to 52,000 generations (Supplementary Methods).

Using this denominator and mutation counts from the minimum-
mutation histories, we inferred lower bounds on mutation rates. These
are lower bounds because such histories never involve reversion or
recurrence events unless essential to explain the distribution of
variants. For the distal-Yq heterochromatin, Z12 large changes in
length over 52,000 generations correspond to a rate Z2.3 � 10�4

large-scale mutations per father-to-son transmission of a Y chromo-
some. For the TSPY array, Z23 changes in length correspond to a rate
Z4.4 � 10�4. For AZFc, Z20 rearrangement events in the tree
correspond to a rate Z3.8 � 10�4, a lower bound broadly consistent
with the independent estimate of 2.5 � 10�4 for one particular AZFc
mutation, the b2/b4 deletion21. For IR3/IR3, the minimum-mutation
count of Z12 inversion events corresponds to a rate of Z2.3 � 10�4.
In addition, it was possible to obtain a maximum-likelihood estimate
of the rate of IR3/IR3 inversion events (Supplementary Methods).
These events seem to have resulted from a single mutational mechan-
ism and are likely to have occurred at the same rate regardless of the
orientation of the IR3/IR3 region. Thus, the analysis needed to
examine only a single parameter, the rate of inversions, which showed
maximum likelihood at 9.2 � 10�4 inversion events per father-
to-son transmission of a Y chromosome.

How do the rates of large-scale structural mutation estimated here
compare with rates of other kinds of mutations in the human
genome? The rates we observed are at the low end of the range of
rates among mini- and microsatellites but are B10,000 times the
average rate of single-nucleotide substitutions (Supplementary
Methods). Considering that structural mutations of the Y chromo-
some often affect hundreds or thousands of kilobases and sometimes
alter gene copy number, these mutations may be a major source of
Y-linked phenotypic variation in human populations.

Despite the prevalence of Y chromosomes with large-scale differ-
ences from the reference sequence (Fig. 2), multicopy gene families
showed limited variation in copy number, with pronounced modes
and few excursions to low or high numbers of copies. We observed
gene copy number variation only in the TSPY array and in AZFc and
flanking areas. In AZFc, a predominance of inversions resulted in few
chromosomes with gene copy numbers that differed from the refer-
ence sequence (Figs. 2, 5c and Supplementary Fig. 8). Furthermore,
the TSPY genes, whose tandem array has undergone frequent changes
in length, also showed limited variation in copy number. Indeed, the
coefficient of variation of TSPY copy number (18.6%; s.d. as a percent
of the mean) was less than that of AZFc gene families (DAZ, 24.2%;

BPY, 27.4%; CDY1, 24.2%; Fig. 5b,c and Supplementary Fig. 8). Is
limited variation in gene copy number consistent with the high
mutation rates underlying widespread structural diversity among
human Y chromosomes? As previously reported, natural selection
has acted against one AZFc variant, the gr/gr deletion, in which several
testis-specific gene families have reduced copy numbers and which
confers increased risk of spermatogenic failure14,23–27. Thus, it is
possible that natural selection had a wider role in constraining
variation among human Y chromosomes by removing extremely
high– or low–copy number variants from the population.

METHODS
Human samples. All assays were performed on human lymphoblastoid cell

lines, cultured human fibroblasts or DNAs extracted from them. Most of these

samples were obtained from the National Human Genome Research Institute/

National Institute of General Medical Sciences DNA Polymorphism Discovery

Resource (Coriell Cell Repositories)28 or other public collections. To maximize

coverage of the Y chromosome genealogical tree, we also studied several human

cell lines from our own collections (Supplementary Fig. 1 and Supplementary

Table 1). Supplementary Methods lists availability of cell lines representing the

structural variants described here.

Length of distal-Yq heterochromatin. For 46 of 47 men tested, we used

quinacrine staining to measure heterochromatin length as a fraction of the total

length of the metaphase Y chromosome, as previously described29 (Z25 nuclei

per sample, except for WHT3870 (12 nuclei)). We assessed the reproducibility

of these measurements as discussed in Supplementary Methods. In one

sample, WHT3299, the Y chromosome contained so little distal-Yq hetero-

chromatin that it could not be measured using quinacrine staining. Instead, we

used metaphase FISH (Supplementary Methods). The very short heterochro-

matin in individual WHT3299 was inherited by his son and thus was not an

artifact of cell culture.

Length of TSPYarray. We used PmeI pulsed-field DNA blotting to measure the

length of the TSPYarray (Fig. 3b). Gels were electrophoresed for 25 h at 14 1C,

6 V cm–1 (200 V), with a 60- to 120-s switch-time ramp. The probe was the

PCR product of STS sY1256. We estimated the number of TSPY repeats by

subtracting the lengths of non–TSPY-repeat flanks (10.9 kb) at the ends of the

PmeI fragment, dividing by 20.37 kb (the size of the repeat unit16) and

rounding. In all chromosomes, we confirmed, by sequencing, the presence of

the PmeI site proximal to the TSPY array (Supplementary Methods). We did

not sequence the PmeI site distal to the array, but loss of that site would

increase the size of the PmeI fragment by only 16 kb. To further verify our

findings, we assayed all samples on DNA blots based on a second restriction

enzyme, XbaI (ref. 11) and obtained size estimates consistent with the PmeI-

based sizes (Supplementary Methods).

Detecting IR3/IR3 orientation and AZFc architectures. One-, two- or three-

color FISH was performed as described30. For each sample and set of probes,
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Figure 5 Summary of identified Y chromosome structural variation. (a–c) Distributions of (a) heterochromatin length, (b) number of repeat units in the TSPY
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Z200 nuclei were scored. Apart from plasmid pDP97 and cosmid 18E8, all

clones used as probes were BACs derived from the RPCI-11 library (prefix

‘RP11-’); refs. 16,20 provide map positions. The computer program that

enumerated potential AZFc architectures is available on request (S.R.).

Rates of mutations giving rise to structural polymorphism. We determined

minimum-mutation histories of the structural variants studied either manually

(IR3/IR3 orientation, AZFc architecture) or using our implementation of

Sankoff ’s algorithm22 (distal-Yq heterochromatin, TSPY array, IR3/IR3 orienta-

tion); code is available on request (S.R.). We sequenced 237 PCR products in

the 47 chromosomes to ascertain in an unbiased way the SNPs used to

determine the total length of time represented by the tree. All SNPs detected,

as well as the genotypes of the 47 chromosomes at these SNPs, have been

submitted to dbSNP. See Supplementary Methods for details of the maximum

likelihood analysis of the rate of IR3/IR3 inversion events.

Accession codes. GenBank: PCR product of STS sY1256, G75613; PCR

products resequenced in SNP discovery, BV678971–BV679207.

Note: Supplementary information is available on the Nature Genetics website.
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